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evaluating equations 1000 x higher!
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Possible that reality is too complicated or models or too reduced fidelity
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• Yields excellent agreement with 

experimental results for a given 

operating condition

• Collision frequency is specified 

empirically.  Only applicable for data 

set used for validation
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𝜐𝐴𝑁
31=1 𝜐𝐴𝑁

32=5. 𝜐𝐴𝑁
33=3

𝜐𝐴𝑁
21=100. 𝜐𝐴𝑁

22=3. 𝜐𝐴𝑁
23=0.5

𝜐𝐴𝑁
11 =1 𝜐𝐴𝑁

12 =8. 𝜐𝐴𝑁
13 =2.

Model

Iteration #3

Hypothesis:  we can use empirical 

data to generate a functional form, 

𝜈𝐴𝑁(𝑇𝑒 , 𝑛𝑒 , . . )

• Yields excellent agreement with 

experimental results for a given 

operating condition

• Collision frequency is specified 

empirically.  Only applicable for data 

set used for validation

• To date, empirical models have not 

been predictive
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Model from regression

𝜐𝐴𝑁
31 𝜐𝐴𝑁

32 𝜐𝐴𝑁
33

𝜐𝐴𝑁
21 𝜐𝐴𝑁

22 𝜐𝐴𝑁
23

𝜐𝐴𝑁
11 𝜐𝐴𝑁

12 𝜐𝐴𝑁
13

൯(𝜐𝐴𝑁
31 , 𝑇𝑒

31 , 𝑛𝑒
31, . . .

൯(𝜐𝐴𝑁
32 , 𝑇𝑒

32 , 𝑛𝑒
32, . . .

൯(𝜐𝐴𝑁
33 , 𝑇𝑒

33 , 𝑛𝑒
33, . . .

൯(𝜐𝐴𝑁
23 , 𝑇𝑒

23 , 𝑛𝑒
23, . . .

)(𝜐𝐴𝑁
22 , 𝑇𝑒

22 , 𝑛𝑒
22, . . .

൯(𝜐𝐴𝑁
13 , 𝑇𝑒

13 , 𝑛𝑒
13, . . .)(𝜐𝐴𝑁

12 , 𝑇𝑒
12 , 𝑛𝑒

12, . . .)(𝜐𝐴𝑁
11 , 𝑇𝑒

11 , 𝑛𝑒
11, . . .

)(𝜐𝐴𝑁
21 , 𝑇𝑒

21 , 𝑛𝑒
21, . . .

Each point from empirical model yields data point
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Model from regression

𝜐𝐴𝑁
31 𝜐𝐴𝑁

32 𝜐𝐴𝑁
33

𝜐𝐴𝑁
21 𝜐𝐴𝑁
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𝜐𝐴𝑁
11 𝜐𝐴𝑁
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13

൯(𝜐𝐴𝑁
31 , 𝑇𝑒

31 , 𝑛𝑒
31, . . .

൯(𝜐𝐴𝑁
32 , 𝑇𝑒

32 , 𝑛𝑒
32, . . .

൯(𝜐𝐴𝑁
33 , 𝑇𝑒

33 , 𝑛𝑒
33, . . .

൯(𝜐𝐴𝑁
23 , 𝑇𝑒

23 , 𝑛𝑒
23, . . .

)(𝜐𝐴𝑁
22 , 𝑇𝑒

22 , 𝑛𝑒
22, . . .

൯(𝜐𝐴𝑁
13 , 𝑇𝑒

13 , 𝑛𝑒
13, . . .)(𝜐𝐴𝑁

12 , 𝑇𝑒
12 , 𝑛𝑒

12, . . .)(𝜐𝐴𝑁
11 , 𝑇𝑒

11 , 𝑛𝑒
11, . . .

)(𝜐𝐴𝑁
21 , 𝑇𝑒

21 , 𝑛𝑒
21, . . .

Each point from empirical model yields data point

Maybe there is a function, 𝜈𝐴𝑁 𝑇𝑒 , 𝑛𝑒 , . . . , that fits the data  
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Model from regression

𝜐𝐴𝑁
31 𝜐𝐴𝑁

32 𝜐𝐴𝑁
33

𝜐𝐴𝑁
21 𝜐𝐴𝑁

22 𝜐𝐴𝑁
23

𝜐𝐴𝑁
11 𝜐𝐴𝑁

12 𝜐𝐴𝑁
13

൯(𝜐𝐴𝑁
31 , 𝑇𝑒

31 , 𝑛𝑒
31, . . .

൯(𝜐𝐴𝑁
32 , 𝑇𝑒

32 , 𝑛𝑒
32, . . .

൯(𝜐𝐴𝑁
33 , 𝑇𝑒

33 , 𝑛𝑒
33, . . .

൯(𝜐𝐴𝑁
23 , 𝑇𝑒

23 , 𝑛𝑒
23, . . .

)(𝜐𝐴𝑁
22 , 𝑇𝑒

22 , 𝑛𝑒
22, . . .

൯(𝜐𝐴𝑁
13 , 𝑇𝑒

13 , 𝑛𝑒
13, . . .)(𝜐𝐴𝑁

12 , 𝑇𝑒
12 , 𝑛𝑒

12, . . .)(𝜐𝐴𝑁
11 , 𝑇𝑒

11 , 𝑛𝑒
11, . . .

)(𝜐𝐴𝑁
21 , 𝑇𝑒

21 , 𝑛𝑒
21, . . .

Maybe there is a function, 𝜈𝐴𝑁 𝑇𝑒 , 𝑛𝑒 , . . . , that fits the data  

𝜈𝐴𝑁= 𝑐1𝑇𝑒 + 𝑐2 𝑛𝑒
2 + 𝑐3ui

We do not know a priori what the functional form should be

It is almost impossible to guess from inspection:  

there are 30 variables to choose from
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Model from regression

𝜐𝐴𝑁
31 𝜐𝐴𝑁

32 𝜐𝐴𝑁
33

𝜐𝐴𝑁
21 𝜐𝐴𝑁

22 𝜐𝐴𝑁
23

𝜐𝐴𝑁
11 𝜐𝐴𝑁

12 𝜐𝐴𝑁
13

൯(𝜐𝐴𝑁
31 , 𝑇𝑒

31 , 𝑛𝑒
31, . . .

൯(𝜐𝐴𝑁
32 , 𝑇𝑒

32 , 𝑛𝑒
32, . . .

൯(𝜐𝐴𝑁
33 , 𝑇𝑒

33 , 𝑛𝑒
33, . . .

൯(𝜐𝐴𝑁
23 , 𝑇𝑒

23 , 𝑛𝑒
23, . . .

)(𝜐𝐴𝑁
22 , 𝑇𝑒

22 , 𝑛𝑒
22, . . .

൯(𝜐𝐴𝑁
13 , 𝑇𝑒

13 , 𝑛𝑒
13, . . .)(𝜐𝐴𝑁

12 , 𝑇𝑒
12 , 𝑛𝑒

12, . . .)(𝜐𝐴𝑁
11 , 𝑇𝑒

11 , 𝑛𝑒
11, . . .

)(𝜐𝐴𝑁
21 , 𝑇𝑒

21 , 𝑛𝑒
21, . . .

Maybe there is a function, 𝜈𝐴𝑁 𝑇𝑒 , 𝑛𝑒 , . . . , that fits the data  

𝜈𝐴𝑁= 𝑐1𝑇𝑒 + 𝑐2 𝑛𝑒
2 + 𝑐3ui

We do not know a priori what the functional form should be

It is almost impossible to guess from inspection:  

there are 30 variables to choose from

Solution:  use machine learning to regress data
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Regression with machine learning

*I. G. Mikellides and I. Katz, Phys. Rev. E vol. 86, no. 4, pp. 1–17, 2012.
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Regression with machine learning

Generate datasets from 

empirically validated codes

7 operating conditions from 4 

different thrusters from 

Hall2De*:  700 data points

*I. G. Mikellides and I. Katz, Phys. Rev. E vol. 86, no. 4, pp. 1–17, 2012.
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Regression with machine learning

Generate datasets from 

empirically validated codes

7 operating conditions from 4 

different thrusters from 

Hall2De*:  700 data points

Prepare datasets  for 

regression

8 normalized lengthscales, 

velocities, and frequencies

*I. G. Mikellides and I. Katz, Phys. Rev. E vol. 86, no. 4, pp. 1–17, 2012.
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Regression with machine learning

Generate datasets from 

empirically validated codes

7 operating conditions from 4 

different thrusters from 

Hall2De*:  700 data points

Prepare datasets  for 

regression

Apply ML regression 

algorithm

8 normalized lengthscales, 

velocities, and frequencies

*I. G. Mikellides and I. Katz, Phys. Rev. E vol. 86, no. 4, pp. 1–17, 2012.

Image credit: M. Quade, Phys Rev. E. no 1. 2016

DataModeler symbolic 

regression from Evolved 

Analytics
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Symbolic regression Pareto front

Models for 𝜈𝐴𝑁
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Symbolic regression Pareto front

Models for 𝜈𝐴𝑁

Simple but poor 

fit to data

Complex and 

overfits data

Compromise model
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Symbolic regression Pareto front

Models for 𝜈𝐴𝑁

Simple but poor 

fit to data

Complex and 

overfits data

Models for analysis drawn 

from “knee”
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Comparison of models to training data

Empirical data from one 

training dataset

Normalized frequency on channel centerline

B. Jorns., PSST, 27 (10), 2018
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Comparison of models to training data

Empirical data from one 

training dataset

Normalized frequency on channel centerline

Note: model collision frequency 

independent of position

B. Jorns., PSST, 27 (10), 2018
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Comparison of models to training data

Response plot of model from Pareto front

B. Jorns., PSST, 27 (10), 2018
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Comparison of models to training data

Response plot of model from Pareto front

Correspondence over four orders of 

magnitude shows promise of ML regression

B. Jorns., PSST, 27 (10), 2018
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Comparison of models to training data

Response plot of model from Pareto front

Correspondence over four orders of 

magnitude shows promise of ML regression

Possible issue:  model overfits data

Is model from ML regression predictive?
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Predictive capability of model

Data from thruster not included in training dataset

Note: model collision frequency 

independent of position

Empirical data from 

test dataset
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Predictive capability of model

Data from thruster not included in training dataset

Note: model collision frequency 

independent of position

Empirical data from 

test dataset

Agreement not as 

critical here
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Predictive capability of model

Response plot of ML model to test data

Even though ML model is fit to other data, it 

can predict collision frequency in new thruster 

and operating condition
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Comparison of ML to first-principles models

First-Principles Model I
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Comparison of ML to first-principles models

First-Principles Model I

First-Principles Model II
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Comparison of ML to first-principles models

First-Principles Model I

First-Principles Model II

Data-driven Model III

ML model has best correspondence and predictive capability of proposed closures
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Comparison of ML to first-principles models

ML model has best correspondence and predictive capability of proposed closures

Test dataset

Training dataset
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Comparison of ML to first-principles models

ML model has best correspondence and predictive capability of proposed closures

Test dataset

Training datasetSuccess of data-driven model invites a number of questions

Fundamentally, is this giving up on physics? Can any 

physical insight emerge from it?

Practically,  can this be used for predictive models?
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Comparison of ML to first-principles models
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Test dataset

Training datasetSuccess of data-driven model invites a number of questions
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physical insight emerge from it?

Practically,  can this be used for predictive models?
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Physical insight

Pareto front of models

From these models, are there are any variables 

that are more common than others?
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Physical insight

Pareto front of models

From these models, are there are any variables 

that are more common than others?

Frequency of variable appearance in best models

Ion drift and Hall drift dominant variables

Search for a first-principles mechanism that 

depends on these parameters

Electron cyclotron drift instability one example



University of Michigan – Plasmadynamics and Electric Propulsion Laboratory

Physical insight

Pareto front of models

From these models, are there are any variables 

that are more common than others?

Frequency of variable appearance in best models

Ion drift and Hall drift dominant variables

Search for a first-principles mechanism that 

depends on these parameters

Electron cyclotron drift instability one example

ML results can guide physical investigation of 

underlying physical processes
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Comparison of ML to first-principles models

ML model has best correspondence and predictive capability of proposed closures

Test dataset

Training datasetSuccess of data-driven model invites a number of questions

Fundamentally, is this giving up on physics? Can any 

physical insight emerge from it?

Practically,  can this be used for predictive models?

Potentially, with more data

But the parameter space is wide!
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Generating additional data on transport in Hall thrusters
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Summary

• Fluid models are attractive tool for modeling Hall effect thrusters

• Need to account for known anomalous electron transport in these models with a type of 

closure:  typically anomalous effects represented with scalar collision frequency (or mobility)

• Data-driven, ML methods can be employed to find functional form for this anomalous 

collision frequency

• Predictions from ML results yield 

– Improved results compared to first-principles models for anomalous collision frequency 

– ML algorithm also yields physical insight into dominant terms governing transport

• ML is a promising path forward for closing anomalous electron transport problem.   

Predictive capability has applications ranging from predictive design to qualification 

through analysis. 

• On-going challenges include 

– Extrapolation

– Data-generation


